Nits-separator

Opfindelsen angár et anlæg til af et fibermateriale at fremstille et nonwoven fiberbánd, og som omfatter en defibrator, mindst ét formerhoved til at forme fiberbándet pá én under drift fortrinsvis horisontalt løbende endeløs formewire, en første transportventilator til via en første kanal at transportere de defibrerede fibre frem til formerhovedet, og en 10 anden tranportventilator til via en anden kanal at afsuge formerhovedet for nits.

Nits er knuder, som opstár i det defibrerede fibermateriale som følge af ufuldstændig defibrering i defibratoren, under transporten frem til formerhovedet, og under de processer, som finder sted i dette.

Nitsene forringer det færdige fiberprodukts kvalitet, og de fjernes derfor konventionelt ved at placere afsug pa strategitil hammermøllen, hvor nitsene ábnes til singulære fibre, som dernæst returneres til formerhovedet.

En betingelse for at opnả den tilstræbte gode kvalitet af det 25 færdige fiberprodukt er, at alle nits suges op. Det kræver imidlertid en sá effektiv afsugning, at velábnede fibre uundgáeligt suges med op i betydeligt omfang. I praksis kommer langt den største del af det afsugede fibermateriale derved til at bestå af velábnede fibre.

For at fá nitsene suget totalt op mả der derfor samlet opsuges store mængder fibermateriale, som efterfølgende udsætter defibratoren for en stor ekstra belastning.
til defibrering af nyt fibermateriale i betragtelig grad.

Defibratoren er ofte flaskehalsen i et anlæg, og i disse til5 fælde kan den nævnte reduktion af defibratorens nyttekapacitet medføre, at det ikke er muligt at udnytte den resterende del af anlægget fuldt ud. Derved forøges anlæggets samlede driftsomkostninger forholdsvist.

En anden ulempe, som er forbundet med ovennævnte konventionelle fremgangsmáde til at fjerne nits fra formerhovedet og omdanne dem til velábnede fibre i defibratoren, bestár i, at de store mængder velábnede fibre, som følger med, forkortes i større eller mindre grad under bearbejdningen i defibratoren, sáledes at kvaliteten af det færdige fiberprodukt forringes.

De luftstrømme, som ved et konventionelt anlæg transporterer fibermaterialerne rundt i anlægget, udgør et samlet system, som er vanskelig at styre.

Det nitsholdige fibermateriale, som suges op i formerhovedet, føres som nævnt til defibratoren, hvor det behandles sammen
30 med nyt materiale, som skal defibreres. Efter endt behanding føres det opsugede fibermateriale dernæst tilbage til formerhovedet i en luftstrøm, som er fælles med luftstrømmen til at bære det nye fibermateriale. Denne luftstrøm suppleres løbende med frisk luft, som suges ind i defibratoren, der saledes ar-
35 bejder under negativt tryk. Samtidig suges der desuden luft ud af formerhovedet via formewiren.

Der er saledes tale om et sammenhængende system, hvor især afsuget fra formerhovedet let kommer ud af balance ved ændring af hammermøllens driftsparametre. Dette skyldes, at undertrykket i hammermøllen samtidigt ændres. En ændring af nævnte 5 driftparametre kræver derfor megen regulering for stedse at kunne fá anlægget til at arbejde optimalt.

Et første formál med opfindelsen bestảr i at anvise et anlæg af den indledningsvis nævnte art, som kan arbejde med et lave10 re energiforbrug end hidtil kendt.

Et andet formal med opfindelsen bestảr i at anvise et anlæg af den indledningsvis nævnte art, hvormed der bedre end hidtil kendt kan fremstilles et kvalitetsprodukt uden nits og forkor15 tede fibre.

Et tredie formál med opfindelsen bestár i at anvise et anlæg af den indledningsvis nævnte art, som er lettere at holde i kontrol end hidtil kendt.
20
Et fjerde formal med opfindelsen bestár i at anvise et anlæg af den indledningsvis nævnte art, som er indrettet sảledes, at defibratoren belastes jævnere, udsættes for mindre slid og udnyttes kapacitetsmæssigt bedre end hidtil kendt.

Det nye og særegne ifølge opfindelsen, hvorved dette opnás, består i, at anlægget omfatter én med den anden kanal forbundet separator til at separere nits og velábnede fibre.

30 Denne indretning medfører, at de store mængder nits og velábnede fibre, som suges op fra formerhovedet, passerer uden om defibratoren, som derved kan udnyttes fuldt ud til defibrering af nyt fibermateriale. Derved spares den energi, som i de konventionelle anlæg medgã til behandling af det opsugede mate35 riale i defibratoren. Endvidere tillades defibratoren at
arbejde med en konstant og jævn belastning og uden det slid, som hidtil har fundet sted pá eksempelvis en hammermølles rotor.

5 Da i hvert fald end del af de velábnede fibre føres uden om defibratoren uden at have forbindelse med den luftbárne strøm af defibreret fibermateriale fra denne, lader anlæggets luftstrømme sig nu nemt styre uden de ulemper, som er forbundet med regulering af de konventionelle anlæg.
10
En yderligere fordel bestảr i, at det færdige fiberprodukt opnár en optimal god kvalitet, fordi fibrene ikke forkortes i defibratoren, og desuden som følge af, at alle nits suges op uden at belaste defibratoren med de store mængder velábnede fibre, som følger med, nár der tilstræbes en fuldstændig opsugning af nits.

De fraseparerede, velábnede fibre kan på passende máde opsamles til senere brug, men kan ogsá med fordel returneres til formerhovedet ved hjælp af en tredie transportventilator via en tredie luftkanal.

Endvidere kan de fraseparerede nits fjernes fra nits-separatoren ved hjælp af en fjerde transportventilator, der er indskudt i en fjerde luftkanal, som ved én udførelsesform kan være tilsluttet defibratoren.

Da de fraseparerede nits kun udgør en mindre del af det fibermateriale, som suges op af formerhovedet, kan de fordele, som opnás ved hjælp af anlægget ifølge opfindelsen, delvis bibeholdes, selv om de fraseparerede nits pá denne máde føres direkte til defibratoren for at blive abnet her.

Ved en fordelagtig udførelsesform kan anlægget kan imidlertid omfatte en særskilt nits-ábner til at omdanne de fraseparerede
nits til velábnede fibre. Derved opnảs den fordel, at defibratoren ikke belastes af de fraseparerede nits.
I dette tilfælde kan den fjerde luftkanal strække sig mellem nits-separatoren og nits-åbneren, der desuden kan være forbun5 det med formerhovedet via en femte luftkanal med en femte transportventilator til at returnere de abnede nits til formerhovedet, saledes at de fraseparerede nits, som ábnes i nits-ábneren, føres i kredsløb uden om defibratoren.

I anlægget findes et antal transportventilatorer, som er vist med punkteret streg for at indikere, at én eller flere af disse transportventilatorer kan undværes ved særlige varianter af den viste udførelsesform.

Anlæggets hovedkomponenter er i det viste tilfælde en kendt hammermølle 1, et kendt formerhoved 2, én under dette anbragt kendt formevire 3, en nits-separator 4 og en nits-åbner 5.

Fra en rulle 6 tilføres hammermøllen 1 fibermateriale, som i nærværende tilfælde antages at være cellulosepulp. Pulpen defibreres på kendt máde i hammermøllen til singulære fibre ved hjælp af én under drift roterende rotor 7 med påhængslede slagler 8.

Fibrene føres ved hjælp af en første transportventilator 9 via en første kanal 10 frem til formerhovedet 2 i en luftstrøm, som dannes, idet hammermøllen i pilens retning tilføres luft via et luftindtag 11.
5
Det viste formerhoved 2 bestảr i hovedsagen af et hus 12 med en perforeret bund 13, og et antal over denne anbragte rotorer 14 med vinger 15.

10 Formewiren 3 bestár af et endeløst, luftpermeabelt bánd, som løber over et antal medløbsruller 16 , der i det viste eksempel er fire, og én drivrulle 17. Under formewiren er der desuden anbragt en sugekasse 18, med en ventilator 19 til at danne undertryk i sugekassen.
15
Under drift fordeles de fibre, som tilføres formerhovedet over den perforerede bund 13 ved hjælp af vingerne 15 pa de roterende rotorer 14.

20 Undertrykket i sugekassen 18 genererer en luftstrøm over bunden 13 og formewiren 2. Denne luftstrøm trækker successivt fibrene ned pá formewiren via åbningerne i den perforerede bund 13 .

25 Formewiren bestár typisk af et net med en sådan maskevidde, at i hvert fald hovedparten af fibrene bliver liggende i et lag 20 pá formewirens overside, mens luften strømmer videre til sugekassen 18.

30 Formewiren fører det dannede fiberlag videre i pilens retning til behandling i anlæggets efterfølgende procesafsnit (ikke vist).

I hammermøllen, under transporten til formerhovedet og under 35 processen i denne, dannes nits, som er knuder i det defibrerede fibermateriale. Nitsene forringer det færdige fiberprodukts
kvalitet og fjernes derfor pả kendt mảde fra formerhovedet via en anden luftkanal 21 med en anden transportventilator 22 .
En god kvalitet af det færdige fiberprodukt kræver, at det er helt fri for nits, der derfor má fjernes fuldstændigt fra for5 merhovedet, inden de nảr at blive revet med af luftstrømmen gennem dennes bund.

Der má derfor anvendes en stærk luftstrøm for effektivt at kunne afsuge nitsene. Denne stærke luftstrøm vil nødvendigvis praksis suges der betydeligt større mængder velábnede fibre op gennem den anden luftkanal 21 end nits.

Nits og velábnede fibre føres via den anden luftkanal 21 frem 15 til nits-separatoren 4. Denne separator kan eksempelvis være et mindre formerhoved (ikke vist), der har den fordel, at det let lader sig indstille til det specifikke formál.

Afsugningen under formerhovedet kan sảledes med fordel være sả kraftig, at nitsene frasepareres med optimal stor nitskoncentration. Det kraftige afsug kan medføre, at der i de fraseparerede velábnede fibre følger en mindre mængde nits med. Det har imidlertid ingen afgørende betydning, da disse nits atter opfanges i formerhovedet og dernæst undergár en ny separationsproces i nits-separatoren.

Nits-separatoren kan imidlertid ogsả være en cyklon (ikke vist) eller en vindsigte (ikke vist).

De fraseparerede, velảbnede fibre fjernes fra nits-separatoren ved hjælp af en tredie transportventilator 23 og returneres til formerhovedet via en tredie luftkanal 24 uden, som ved de konventionelle anlæg, at være forkortet eller pá anden máde beskadiget.

De fraseparerede nits afsuges fra nits-separatoren ved hjælp af en fjerde transportventilator 25 via en fjerde luftkanal 26, som er tilsluttet nits-ábneren 5. Nits-ábneren kan eksempelvis være en mindre en hammermølle (ikke vist), en raffinør
5 (ikke vist) til at abne nitsene mellem to kværneplader, eller en karte (ikke vist).

Efter at være ábnet i nits-åbneren ledes de nu velábnede fibre tilbage til formerhovedet 2 via en femte luftkanal 27 med en
10 femte transportventilator 29. I figuren forenes den tredie og femte luftkanal 24;27 ved tilslutningen til formerhovedet. Alternativt kan de to luftkanaler 24;27 være tilsluttet formerhovedet hver for sig (ikke vist).

15 En luftkanal 28 , som er vist med punkteret linie, indikerer, at hammermøllen 1 kan anvendes til at abne nitsene i stedet for nits-ábneren 5, der derved kan spares. I de tilfælde, hvor hammermøllen har overskydende kapacitet, kan denne løsning være fordelagtig, da behovet for investering derved bliver 20 mindre.

Opfindelsen er ovenfor beskrevet og på tegningen vist pá basis af et anlæg, som har én hammermølle 1, ét formerhoved 2 , én formewire 3, én nits-separator 4 og én nits-ábner 5.
25
Anlægget kan dog inden for opfindelsens beskyttelsesomfang have et hvilket som helst passende antal af ovennævnte komponenter $1,2,3,4 \mathrm{og} 5 \mathrm{og}$ i en hvilken som helst kombination.

30 Defibratoren behøver heller ikke at være en hammermølle, men kan lige sá godt være af en hvilken som helst anden velegnet defibratortype.

Desuden kan anlægget udformes til forarbejdning af såvel cel35 lulose fibre som andre fibermaterialer, samt en blanding af disse.

Patentkrav

1. Anlæg til af et fibermateriale at fremstille et nonwoven 5 fiberbánd, og som omfatter en defibrator, sásom en hammermølle til defibrering af fibermaterialet, og mindst ét formerhoved til at forme fiberbándet pả én under drift fortrinsvis horisontalt løbende endeløs formewire, en første transportventilator til via en første luftkanal at transportere de defibrerede fibre frem til formerhovedet, og en anden tranportventilator til via en anden luftkanal at afsuge formerhovedet for nits, kendetegnet ved, at anlægget desuden omfatter én med den anden luftkanal forbundet separator til at separere nits og velábnede fibre.
2. Anlæg ifølge krav 1, kendetegnet ved, at det omfatter en tredie transportventilator til via en tredie luftkanal at returnere de fraseparerede, velảbnede fibre til formerhovedet.
3. Anlæg ifølge ethvert af kravene 1 - 5, kendetegnet ved, at
4. Anlæg ifølge krav 1 eller 2, kendetegnet ved, at det omfatter en fjerde transportventilator til via en fjerde luftkanal at fjerne de fraseparerede nits fra nits-separatoren.
5. Anlæg ifølge krav 1, 2 eller 3 , kendetegnet ved, at det 5 omfatter en nits-abner til at omdanne de fraseparerede nits til velábnede fibre.
6. Anlæg ifølge ethvert af kravene 1 - 4, kendetegnet ved, at den fjerde luftkanal strækker sig mellem nits-separatoren og nits-ábneren, og at denne desuden er forbundet med formerhovedet via en femte luftkanal med en femte transportventilator til at returnere de ábnede nits til formerhovedet. nits-separatoren er et formerhoved.
7. Anlæg ifølge ethvert af kravene 1 - 5, kendetegnet ved, at nits-separatoren er en cyklon.
8. Anlæg ifølge ethvert af kravene 1 - 5, kendetegnet ved, at
9. Anlæg ifølge ethvert af kravene 1 - 5, kendetegnet ved, at nits-ábneren er en raffinør, som er indrettet til at åbne nitsene mellem to kværneplader.
10
10. Anlæg ifølge ethvert af kravene 1 - 5, kendetegnet ved, at nits-ábneren er udformet som en karte.

15

20

25

30

35

Nits-separator

$S A M M E N D R A G$

5
Et anlæg tjener til at fremstille et nonwoven fiberbảnd (20) af et fibermateriale, sásom cellulose pulp (6). Anlægget omfatter en hammermølle (1) til defibrering af fibermaterialet, og et formerhoved (2) til at forme fiberbándet pá én under 10 drift fortrinsvis horisontalt løbende, endeløs formewire (3), en første transportventilator (9) til via en første luftkanal (10) at transportere de defibrerede fibre frem til formerhovedet, og en anden tranportventilator (22) til via en anden luftkanal (21) at afsuge formerhovedet for nits. Desuden om15 fatter anlægget én med den anden luftkanal forbundet separator (4) til at separere nits og velábnede fibre, og en tredie transportventilator (23) til via en tredie luftkanal (24) at returnere de fraseparerede, velábnede fibre til formerhovedet, samt en nits-abner (5) til at omdanne de fraseparerede nits 20 til velábnede fibre. De fraseparerede nits transporteres fra nits-separatoren (4) til nits-ábneren (5) ved hjælp af en fjerde transportventilator (25) via en fjerde luftkanal (26). De ábnede fibre returneres ved hjælp af en femte transportventilator (29) til formerhovedet (2) via en femte luftkanal 25 (27). Anlægget er let at styre og er i stand til at fremstille fiberprodukter med optimal god kvalitet. Defibratoren tillades desuden at arbejde med fuld kapacitet til defibrering af nyt fibermateriale, sáledes at det resterende anlæg kan producere med optimalt stort udbytte. Anlægget er endvidere meget 30 energibesparende.

